An Operator Extension of Bohr's inequality
نویسندگان
چکیده مقاله:
این مقاله چکیده ندارد
منابع مشابه
An Operator Extension of Bohr’s Inequality
T φ(At)dμ(t) for every linear functional φ in the norm dual A of A; cf. [3, Section 4.1]. Further, a field (φt)t∈T of positive linear mappings φ : A → B between C -algebras of operators is called continuous if the function t 7→ φt(A) is continuous for every A ∈ A. If the C-algebras include the identity operators, denoted by the same I, and the field t 7→ φt(I) is integrable with integral I, we ...
متن کاملAn Operator Extension of C̆ebys̆ev Inequality
Some operator inequalities for synchronous functions that are related to the c̆ebys̆ev inequality are given. Among other inequalities for synchronous functions it is shown that ‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖ ≤ max {∥∥φ (f2 (A))− φ (f (A))∥∥ , ∥∥φ (g2 (A))− φ (g (A))∥∥} whereA is a self-adjoint and compact operator on B (H ), f, g ∈ C (sp (A)) continuous and non-negative functions and φ : B...
متن کاملAn Operator Inequality Related to Jensen’s Inequality
For bounded non-negative operators A and B, Furuta showed 0 ≤ A ≤ B implies A r 2BA r 2 ≤ (A r 2BA r 2 ) s+r t+r (0 ≤ r, 0 ≤ s ≤ t). We will extend this as follows: 0 ≤ A ≤ B ! λ C (0 < λ < 1) implies A r 2 (λB + (1− λ)C)A r 2 ≤ {A r 2 (λB + (1 − λ)C)A r 2 } s+r t+r , where B ! λ C is a harmonic mean of B and C. The idea of the proof comes from Jensen’s inequality for an operator convex functio...
متن کاملExtension of Jensen’s Inequality for Operators without Operator Convexity
and Applied Analysis 3 If one of the following conditions ii ψ ◦ φ−1 is concave and ψ−1 is operator monotone, ii′ ψ ◦ φ−1 is convex and −ψ−1 is operator monotone, is satisfied, then the reverse inequality is valid in 1.7 . In this paper we study an extension of Jensen’s inequality given in Theorem A. As an application of this result, we give an extension of Theorem B for a version of the quasia...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 35 شماره No. 2
صفحات 77- 84
تاریخ انتشار 2011-01-16
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023